三層積層板の振動減衰特性に及ぼす形状の影響

報告者 14-28 高橋 洋平 指導教員 木澤 悟

1. 緒言

1年を追うごとに技術が発展し、高い技術を望む現代社会において低騒音化、低振動化は製品の付 加価値として注目され、それと同時に、静穏化対策技術の応用として研究が進められている、これを 実現するものの1つに三層積層板が挙げられる、材料の間に粘弾性物質を挟み込んだもので、振動が 与えられた場合、材料と接する粘弾性物質内で剪断変形が生じることにより、摩擦による熱エネルギ でもって振動エネルギを消費させ、減衰を狙ったものである. 測定方法については JIS(G0602)で規定 されているが、これは平板についてのみ定めたものであり、数ある工業製品は単なる平板だけで構成 されることはないから、なにかしら立体をなした形状の三層積層板を測定し、平板との振動特性の違 いを明らかにすることを目的とする.

2. 実験方法

実験装置は図1のようなものを用いた.本 研究ではジェネレータに固定台を取り付け, その固定台に試験片を取り付ける. 試験片は ネジで固定するが、本研究では試験片の固定 方法も検討する必要があり、ネジを4本・

6本・8本・10本の4種類で実験した.

また、試験片はこちらも単層平板・三層積層平板・ 単層深絞り加工板・三層積層深絞り加工板の4種類 である. 試験方法は、固定台にネジで固定し、加速 度ピックアップを固定台, 試験片それぞれに取り付 け、加速度における入力と出力の伝達関数を求めた. 三層積層板の減衰効果については、周波数応答から損

失係数を求めることで評価し, 試験片の形状と制振 材の有無による影響及び、固定方法による影響を調べた.

3. 実験結果と考察

図2においては、固定方法に限らず深絞り加工を施した方が ゲインを低く抑えられ、1次の十分な減衰効果が現れている. 他の2次・3次では平板のゲインが低く、1次モードとは逆 転現象が起きている. ただし、2次以降のモードは曲げ、又 は、ねじれの確かな区別がついないために、単純に比較する には難しい。また、図から固定法の違いにより、減衰効果に 図3三層積層平板による次数とゲインの関係 影響を与えていることがわかった.

図3・図4より、深絞り加工を施した方が1次モードにお けるゲインが低く、低周波領域での減衰効果が期待できると 考えられる。逆に、平板となると1次モードの減衰効果は期 待できない。

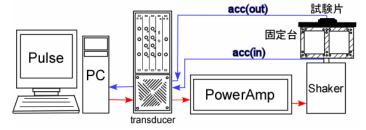


図1 実験装置概略図

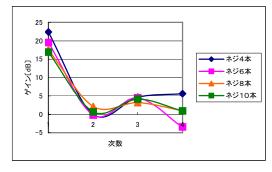



図2 1次においての形状の変化による固定方法とゲインの関係

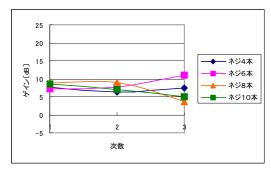


図4 三層積層加工板による次数とゲインの関係