例 題 片持ちばり

片持ちばりのモード解析を行い, y 方向の曲げ振動の1次から3次までの固有振動を求め, それらに 対応する固有モードを表示する.

形状:板厚 t = 0.005m,幅b = 0.01m,長さL = 0.09m材料:軟鋼,ヤング率:E = 210GPa,ポアソン比v = 0.3,密度 $\rho = 7.86 \times 10^3 kg/m^3$ 境界条件:左端固定

解析手順(方法2)

1. Model Navigator から

Structural Mechnics Module > Mindin Plate > Eigenfrequency analysis を選択

Space dimension: 20	
FBNLAB Structural Mechanics Module Plane Stress Plane Strain Plane S	
Heat Transfer Structural Mechanics POE Modes	PEVILAE - Multiphysics modeling.
Dependent variables:	

2 . Drow 画面で図面を描く

横方向に長さL = 0.09m,縦方向に板幅b = 0.01mの図面を描く. (Mindlinを選択した場合は,画面の奥行きが板厚さ方向になります)

 Physics > subdomain settings で材料定数を設定します.
 ここでは,軟鋼に関する定数を入力します.はじめに Subdomain selection で1を select してく ださい. dialog box 中の thickness はこの例題の場合,板厚*t* = 0.005*m* を入力します.その他は デフォルトでいいです.

Subdomain Settings - Min	dlin Plate (dr	m)		×
Subdomain selection	Material Const	raint Load Initial Load and Stra s	in Postprocessing Init Element	_1
	Library materia	al: Load]	
	Material model	Isotropic material		
	Coord. sys.	Global coordinate system 💌		
	Quantity	Value/Expression	Description	
	E	2.1e11	Young's modulus	
	v (0.33	Poisson's ratio	
	a	1.2e-5	Thermal expansion coeff.	
	S _f	1.2	Shear factor	
	P (7860	Density	
	thickness 🤇	0.005	Thickness	
Select by group	а dM	1	Mass damping parameter	
Active in this domain	₿dK	0.001	Stiffness damping parameter	
		[OK Cancel Apply	

4 . Physics > Boundary Settings. では境界条件を設定します.

はじめに Subdomain selection で1を select してください .次に Condition から Fixed を選択してください . 左側が固定されます .

E	Boundary Settings - Min	idlin Plate (drm)		×
	Boundary selection	Constraint Load Constraint settings Coord. sys. Constraint R ₂ R ₁ h H R	Tangent and normal coord. sys. (t.n) Fixed Value Expression 0 Edt Edt	Description Constraint z-dir. Constraint rotation H Matrix R Vector
			ок с	ancel Apply

5. デフォルトでメッシュをきります.

initialize mesh をセレクトしてください.

鄼 FEMLAB - Geom1/Mindlin Plate	e (drm) : plate3.fl	
<u>File Edit Options Draw Physics</u>	<u>Mesh</u> Solve Postprocessing	M <u>u</u> ltiphysics <u>H</u> elp
🗅 🚅 🖬 🎒 👗 🖿 💼 🖹 📐 Z	🛆 Initialize Mesh	a 🕅 🔂 尾 🔍 🕲
C.	<u> R</u> efine Mesh	(freq drm(1)=517.556283 Sur1
	\land Refine Selection	
	Display Element Quality	
	Me <u>s</u> h Statistics	
	Mesh <u>P</u> arameters	
* 2) <u>M</u> esh Mode	

6 . Solve > Solve Problem によって計算を行います.

FEML	AB - Geor	m1/Min	dlin Plat	te (drm) : plat	e3.fl							
: <u>E</u> dit	<u>O</u> ptions	<u>D</u> raw	Physics	<u>M</u> esh	<u>S</u> olve	<u>P</u> ostprocessing	M <u>u</u> lti	iphysics	<u>H</u> elp				
🖻 🖥	1 🛃 👗	i	k Z		\in	Solve Problem		Q 💭	\$∻ 🖌	Ω6 Ω්6	Ω	© 闷	Ŷ
C,					_ ≅	<u>R</u> estart		m(1)=517	.556283	Surface:	z-di	splacement	t⊦
					<u> U</u> pd	late Model							
5					<u>G</u> et	Initial Value							
$\mathbf{\rho}$					₽	Solver <u>P</u> arameters	}						
ঽ					}	Solver <u>M</u> anager							
2					⊻iev	w Log							

7.モード形状が求められます.

postprocessing > Plot Parameter > General の diagol Box において以下のようにチェックして ください. sulution to use 内の Eigenfrequency は各モードの固有振動数を表しています.

次に postprocessing > Plot Parameter > Surface の diagol Box において Hieght data をチェック してください.3次元的にモード形を見ることができます.

Plot Parameters	K lot Parameters
Preventer Annue Streamine MaxMin Deform Animate Plot hype Solution to use Contour Solution to use Streamine Solution to use If Surface Contour Solution to use Streamine Streamine Streamine Contour Solution at angle (phase): Streamine Streamine Streamine Streamine Streamine Streamine Streamine Streamine Streamine Streamine Streamine Streamine Bernent selection H373 839704 Gegress Streamine Streamine Streamine Bernent retinement For in: Streamine Streamine Streamine Otion Bernent retinement Auto 7 Make rough plots Tib Plot in: Main exces Keep current plot OK Cancel Apply	Boundary Arrow Sweedine Mer/Men Detorms Animate General Surface Contour Contour Contour If Surface plot Image: Image

1次の曲げモード形は 517Hz で

となります.2次の曲げモード形状は3201Hzで, Apply すれば結果が得られます.

General	 Streamine MaxMin Deform Animate Surface Contour
Plot type	Solution to use
Surface	Egentrequency: 3201.942133 *
Contour	Time:
Boundary	Solution at angle (phase): 0 degrees
Arrow	Element selection
T Streamine	Logicel expression for inclusion:
Maschin marker	Execution in A III companying
Deformed shape	
Geometry edges	
	Make rough plots
ot in: Main axes Seconthing	Title

デフォルトでは6次モードまで求められます.