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ABSTRACT 
 

In order to obtain the optimal condition for designing a vibration 
absorber used in calm water, a two-degree-of-freedom system 
composed of a main vibrating-system and a vibration absorber in the 
water has been considered. Then, the system has been assumed to 
vibrate vertically due to the forced displacement applied at its top, and 
the optimal condition for the absorber has been determined so as to 
minimize the amplitude of the main system. There are six design-
parameters affecting the optimal condition of the absorber in the water 
instead of four parameters in air. In this study, Quasi-Newton method 
has been applied to the system to determine the optimal combination of 
those six design parameters simultaneously. The result indicates that 
among the six parameters, four parameters greatly affect the 
performance of absorber in the water within the range of this study.  

 
KEY WORDS: Vibration Control in Calm Water, Vibration Absorber, 
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INTRODUCTION 
 

With progress of the ocean development, controls of vibrating 
bodies in water have been required in many cases, and a vibration 
absorber could be considered as one of the control systems. Up to the 
present, the optimal condition for designing a vibration absorber used in 
air has been extensively studied by many researchers (for example, Den 
Hartog, 1947; Reed, 1961) and now it is well established. However, the 
condition for an absorber used in water has not been reported yet in any 
publications. In the previous study, the authors (Aso and Kobayashi, 
1998) found the optimal combination of vibration absorber used in 
calm water, but only three parameters among the afore-mentioned six 
design parameters were optimized, keeping the other parameters 

constant. 
In this study, Quasi-Newton method was applied to the system to 

determine the optimal combination of the six design parameters 
simultaneously, and the comprehensive optimal-condition for an 
absorber in the water has been determined, clarifying the effects of the 
six design parameters concerned. 
 
 

 
 

Fig. 1 Schematic diagram of the vibrating system 
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ANALYSIS 
 

For examining the effect of the absorber on the vibration of a main 
system, the vibration of the two-degree-of-freedom system shown in 
Fig. 1 has been theoretically analyzed. The equations of motion for this 
system are expressed as follows: 
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where iiiii xtFmgk ),(,,, ( 1=i  for the main system, 2  for the absorber) 
are the spring constants, viscous damping coefficients of dampers, 
masses, and fluid forces due to the ambient water, respectively. 
Besides, 0x  is the forced displacement at the top of the system, which is 
assumed as ta ωsin in this study. 

The fluid forces, )2,1()( =itFi , can be calculated by the following 
Morison’s equation (Morison et al.,1950). 
 

)2,1(||5.0)( =+= ixxSCxmCtF iiiDiiaiMii &&&& ρ                                 (2) 
 
where DiMi CC ,  are the added mass and drag coefficients, and where 

iai Sm ,,ρ are the masses of the ambient water displaced by im ,density 
of the ambient water, cross-sectional area of im ,respectively. In this 
analysis, the forces are evaluated by the following modified Morison’s 
equation, which has the drag term linearized by the energy method. 
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where ω,ia , ii cm ,~ are the amplitudes of im ,and angular frequency, 
added mass and equivalent damping coefficients, respectively. ic are 
the functions of amplitudes ia . 

Here, the total masses including their added masses are defined as 
follows: 

)2,1(~ =+= immm iii                                                                 (4) 
 
and the following non-dimensional quantities are defined, 
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Then, the non-dimensional equations of motion are written as follows: 
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Next, the steady-state solution for Eq. 6 can be assumed as the 
following forms: 
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After substitution of these solutions into Eq. 6, the following 
simultaneous equations are obtained by equating the cosine and sine 
terms, respectively. 
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Thus, 2121 ,,, BBAA can be obtained by solving these equations, and the 
vibrations of im  can be determined. 

However, 1C  and 2C  are the functions of the vibration amplitudes 
of im . If the amplitudes of 1X  and 2X  are defined as α  and β , 
respectively, α  and β  are expressed in the following forms: 
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Then, 1C  and 2C  can be represented in terms of α  and β  as follows: 
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where 0C is the following non-dimensional damping coefficient. 
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Hence, the initial values ofα and β  are assumed in advance, and 

2121 ,,, BBAA  are obtained by solving Eq. 8 with the relation of Eq. 10 
in iterative manner. Then, the amplitude of main vibrating system,α , is 
minimized. 
 
 
 
METHOD FOR FINDING THE OPTIMAL ABSORBER 
 

From the analysis mentioned so far, the design parameters are 
found to be SCG ,,,,, 01δγµ  and the last two parameters are the 
inherent ones in case of the absorber used in calm water. This system 
includes the damping due to the ambient water besides the damping of 
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the main vibrating system. Hence, so-called fixed-points theory (Asami 
et. al., 1995) could not be applied to the system. However, Aso and 
Kobayashi have clarified in the previous study (1998) that the peak 
amplitude of frequency response curve becomes minimum when the 
double peaks appeared in the curve have the same value of α . For 
instance, Figs. 2 and 3 show the relationships of α  vs. Ω , in cases of 
various values of µ  or γ  with the constant values of the other design 
parameters mentioned above. In these figures, it can be found that α  
becomes minimum when the double-peak amplitudes of the frequency-
response curve (solid line) are equal. Now, the values of the parameters 
causing the minimum amplitude of the main vibrating system design 
the optimal absorber, and so the optimal condition of absorber in water 
could be obtained by finding the parameters which equalize the double-
peak amplitudes of the frequency-response curve. 
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Fig. 2 Frequency response curves for various values of µ  
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Fig. 3 Frequency response curves for various values of γ  
 

In this study, the maximum amplitude of α ,α′ , is calculated in 
advance within the frequency range considered, and then the optimal 

combination of the design parameters which minimize α′  is 
determined by Quasi-Newton method. 

Now, the design parameter vector, p , is defined as =p  

),,,,,( 01 CSGδγµ , and the maximum amplitude )(' pα can be obtained 
from α  as follows: 
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where ε and mΩ are the quantities defining the range of Ω . In case of 
Fig. 2, for example, ε and mΩ take 0.01, 1.50, respectively.  
Moreover, DFP method (Davidon-Fletcher-Powel method), which is 
one of the Quasi-Newton methods, is applied to the system to 
determine the optimal combination of design parameters, p , which 
minimizes the vibration amplitude of the main system.    
The gradient )(' ppα and Hessian )(' pppα  for pp =  are expressed as 
follows: 
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where subscripts p , pp of )(' ⋅pα , )(' ⋅ppα denote the first and second 

derivatives with respect to the design parameters, ip ,2,1( =i  
),nL ,respectively. The bald face characters appearing in the following 

sentences represent a matrix or a vector. 
By applying the DFP method to the system, the approximate 

expression of Hessian matrix )(' p
pp

α could be obtained from the 

gradient vector )(' ppα as shown below. This method has an advantage 
when the order of the object system is large and when the objective 
function is more complicated. Moreover, the gradient, )(' ppα , is 
obtained by the numerical differentiation. 

In this study, the inequality-constraint is applied to the design 
parameters to restrict the range where these parameters could be 
practical. Hence, in the following calculation algorithm, the modified 
objective function, )(pα , including the penalty-constraint is minimized 
instead of the original objective function )(' pα . 
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where )(pih is the function pertaining to the inequality-constraint. 
When the design parameter vector p  exists within the practical region, 

)(pih  takes a negative value, otherwise it takes a positive value. 
Moreover, n  is the number of constraints, and r is the penalty 
coefficient. In the following minimization algorism, the penalty 
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coefficient, r , is gradually increased to minimize )(pα . 
When r becomes large enough, )(' pα  is expected to have the 
minimum value. 

The calculation algorithm of the DFP method is expressed as 
follows (Kanou, 1987) : 
 

At the beginning, the inverse-Hessian is defined as iH and 1=k . 
STEP 1) Initial design parameters 0p and positive-symmetric matrix 

0H are assumed. 
STEP 2) )( 0ppα is calculated, and the procedure is terminated if 

0)( 0 ≅ppα . 
STEP 3) The steepest-descend-direction is calculated as 

)( kpkk pHd α−= , and kν  is found to minimize )( kkk dp να +  by 

the line-search method. Then, kkkk dpp ν+=+1 is obtained. 
STEP 4) )( 1+kp pα is calculated, and the procedure is terminated if 

0)( 1 ≅+kp pα . 

STEP 5) 1+kH is obtained by the following DFP equation: 
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where )()(, 11 kpkpkkkk ppypps αα −=−= ++ . 

STEP 6) The penalty coefficient, r , is increased as )1(,1 >=+ λλ kk rr  
and 1+= kk , then the procedure is returned to STEP 3). 
The above-mentioned calculation procedure is summarized in the flow 
chart of Fig. 4. 
 
 
RESULT AND DISCUSSIONS 
 
According to the analytical procedure mentioned above, the design 
parameters are found to be SCG ,,,,, 01δγµ . Here, the inequality 
constraint is assumed as follows: 
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The results calculated under the constraint (Eq. 17) for various 
initial design parameters are shown in Table 1.  In these calculations, 
the initial value of penalty coefficient, 0r , is selected as 800 , and the 

incremental ratio, λ , is chosen as 1.2.  The convergence histories of the 
design parameters and the objective function with the initial design 
parameter, )02.0,5.0,05.0,2.0,2.0,2.0(0 =p , are shown in Fig. 5. In this 
figure, the solid lines indicate the histories of the design parameters and 
dashed line indicates the history of the objective function )(pα . 

)(pα decreases with the iteration number, and at 9th iterations it almost 
converges. After 43rd iterations, the objective function takes the 
minimum value ( )(pα = 1.64126 ).     In this case,  however,  the four 
parameters except µ and γ converge to the upper bounds of the 
inequality-constraint prescribed in Eq. 17, as shown in Table 1.  

 
 

 
 
 
Fig. 4 Flow chart for determining the optimal combination 

 
 
Table 1 Calculated result in case of the condition prescribed in Eq. 17 
 

  Design Parameter ),,,,,( 01 CSGδγµ=p  α  DFP 

Initial 0.5        ,    0.5       ,     0.5      ,    0.05    ,    1.0      ,    0.05   
Case 1 

Converged 0.45485,    0.31652,    1.0000,    0.1000,    2.0000,    0.0500 1.64126 49 

Initial 0.2        ,    0.2         ,    0.2      ,   0.05    ,    0.5      ,    0.02   
Case 2 

Converged 0.45441,    0.31636,    1.0000,    0.1000,    1.9999,    0.0500 1.64126 43 

Initial 1.2        ,    1.1        ,    1.3      ,    0.15    ,    2.3      ,    0.06    
Case 3 

Converged 0.45352,    0.31604,    0.9999,    0.1000,    2.0000,    0.0500 1.64126 32 
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Table 2 Calculated result in case of the condition prescribed in Eq. 18 
 

  Design Parameter ),,,,,( 01 CSGδγµ=p  α  DFP 

Initial 0.2        ,    0.2        ,    0.2      ,    0.05    ,    0.5      ,    0.02    
Case 2 

Converged 1.66882,    0.26559,    2.0000,    0.2000,    4.0000,    0.1000 1.21895 24 
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Fig. 5 Convergence histories of the design parameters and the objective 
function in case 2 (Table 1) 

 
 
Next, the upper bounds of the inequality-constraint has been 

extended to two times larger ones than those of the last case, as 
indicated in Eq. 18. The calculated results and the convergence 
histories for this case are shown Table 2 and Fig. 6, respectively. 
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In this case, )(pα considerably decreases at 3rd and 17th iterations, and 
then the objective function takes the minimum value (1.21895) after 
24th iterations. 

Fig. 7 indicates the frequency response curves (α  vs. Ω ) in cases 
of the optimal vibration absorbers as well as without absorber, based on 
the constraints in Eqs. 17 and 18, respectively. Comparison of the two 
results for the optimal absorbers indicates that the double-peak 
amplitudes appearing in each frequency response curve are equalized. 
Hence, the previously mentioned design criterion (Aso and Kobayashi, 
1998) based on the equivalent double-peak amplitudes in the 
frequency-response curve, is verified in this study. Furthermore, it can 
be seen from Fig. 7 that the resonance frequencies (peak frequencies) 
for Eq. 18 are shifted to the lower side of frequency, compared with 
those for Eq.17, and that the peak amplitudes of the main system for 
Eq.18 are smaller than those for Eq. 17. 
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Fig. 6 Convergence histories of the design parameters and the objective 

function in case 2 (Table 2) 
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Fig. 7 Frequency response curve after the optimal design 
 
The results of Table 2 as well as Table 1 also indicate that the four 
parameters except µ  and γ ,converge to the upper bounds of their 
prescribed ranges, though µ  and γ  take the values within their range. 
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Table 3 Sensitivity Analysis of parameters to the performance of absorber 
 

  1.0 1.5 2.0 2.5 3.0 3.5 

δ  1.000 1.500 1.999 2.500 3.000 3.500 
α  1.64126 1.59852 1.55789 1.51881 1.48084 1.45633 δ  

δα ∆∆ /   -0.08548 -0.08345 -0.08163 -0.08021 -0.07397 

1G  0.1000 0.1500 0.2000 0.25000 0.3000 0.35000 

α  1.64126 1.54448 1.46115 1.38870 1.32866 1.29500 1G  

1/ G∆∆α   -1.9356 -1.8011 -1.6837 -1.5630 -1.3850 

S  1.9999 3.0000 4.0000 5.0000 6.0000 3.50000 
α  1.64126 1.56120 1.50222 1.45578 1.41759 1.38530 S  

S∆∆ /α   -0.08006 -0.06952 -0.06183 -0.05591 -0.05119 

0C  0.050 0.075 0.100 0.1250 0.1500 0.1750 
α  1.64126 1.52267 1.44072 1.37949 1.33151 1.29271 

 
0C  

0/ C∆∆α   -4.7436 -4.0108 -3.4903 -3.0975 -2.7884 
 
 
 
 
Hence, it is easily recognized that greater values of 01 ,,, CSGδ are 
more effective for reducing the amplitude of the main system within the 
range of this study. Consequently, it is recommended that the greatest 
values of these four parameters within their allowable ranges are 
selected in advance, and then, µ and γ are optimized to minimize the 
vibration amplitude of main system. However, those four parameters 
are usually determined before designing the vibration absorber in order 
to satisfy the limitations assigned during the design of the main system. 
Moreover, all of the four parameters could not take the greatest values 
simultaneously from the practical limitations. Hence, it is necessary to 
examine the preference order of the four parameters when assigning the 
value to them. 

Then, the sensitivity analysis has been performed to determine the 
effect of these four parameters on the reduction ofα . Table 3 shows 
the calculated result when the upper bounds of inequality constraints of 
the four parameters are extended to 1.5 - 3.5 times larger bounds from 
those prescribed in Eq. 17. This table indicates the converged values of 
the parameters, the corresponding values of α  and the sensitivities 
( δα ∆∆ / , 1/ G∆∆α , S∆∆ /α , 0/ C∆∆α ) based on the values of 
constraints prescribed in Eq. 17. 
Here, it is recognized again that the above-mentioned four parameters 
always converge to the upper bounds of their inequality constraints.  
From this table, it is can be found that the effects of 0C  and 1G on the 
reduction of α  are considerably large, whereas the effects of δ  and 
S  are very small. Moreover, the influential order of the four 
parameters on the reduction of α  is clarified as 0C , 1G , δ and S . 

In future, the mutual effects of the parameters on the optimal 
condition of the absorber will be examined. Moreover, the theoretical 
results obtained in this study will have to be examined experimentally. 
 
 
CONCLUSION 
 

In order to obtain the optimal design parameters for a vibration 
absorber used in calm water, the vibration of a two-degree-of-freedom 

system in the water has been analyzed, and the optimal conditions for 
the absorber have been determined by the Quasi-Newton method. 

The results obtained are as follows: 
1. There are six design parameters for an absorber in calm water, and 

the optimal combination of these parameters could be determined 
simultaneously by the DFP method (Quasi-Newton method). 

2. For designing the optimal absorber in the water, the values of the 
four parametersδ , 1G , S , 0C  among the six parameters should be 
selected as the largest ones within their allowable ranges, and then, 
µ and γ have to be optimized for minimizing the vibration 
amplitude of the main system. This finding helps to reduce greatly 
the labor and time required to design the optimal absorber in water. 

3. The effects of the four parameters on the amplitude of the main 
body are greater in order of 0C , 1G , δ and S . This influential 
order (sensitivity) of the parameters also helps to design the 
optimum absorber when the afore-obtained largest values of the 
four parameters can not be applied simultaneously from the 
practical limitations. 

4. In future, the method developed in this study will have to be 
checked widely by experiments, but so far it has been found that 
the results obtained by this method fairly well coincides with the 
experimental results within the range of ω  less than 100 rad/s. 
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