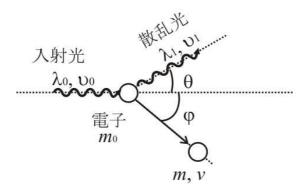
光の粒子性

1887 年 ヘルツ(Hertz): 光電効果の発見

1905 年 アインシュタイン(Einstein): 光量子(light quantum)

光子 1 個あたりのエネルギー : E=hv (h:プランク定数、v:振動数) 光電子放出 : 光を金属に当てた時、金属から放出される電子のエネルギー E_e

 $E_e = hV - \phi$ (ϕ : 金属の仕事関数)


コンプトン効果 Compton effect

X線を物質に照射すると、一部は透過・吸収し、残りは散乱する。

- ・トムソン散乱(Thomson Scattering):同じ波長の電磁波が放射される。
- ・コンプトン散乱(Compton Scattering): 照射 X 線より長い波長の X 線が放射される。

コンプトン散乱

静止している電子に振動数 ν_0 (波長 λ_0) の光を照射する。

入射光

エネルギー
$$hv_0$$
 運動量 $\frac{hv_0}{c}$

静止している電子(質量 m_0)

エネルギー
$$m_0c^2$$

散乱光

エネルギー
$$hv_1$$
 運動量 $\frac{hv_1}{c}$

速度vで運動している電子(質量 $m = m_0 / \sqrt{1 - \frac{v^2}{c^2}}$)

エネルギー
$$mc^2$$
 運動量 mv

散乱前後の運動量保存則より

$$\frac{hv_0}{c} = \frac{hv_1}{c}\cos\theta + mv\cos\varphi \qquad (\text{水平成分})$$

$$0 = \frac{hv_1}{c}\sin\theta + mv\sin\varphi \qquad (垂直成分)$$

上式からφを消去すると

$$mv^2 = \frac{h^2}{\lambda_0^2} + \frac{h^2}{\lambda_1^2} - 2\frac{h^2}{\lambda_0\lambda_1}\cos\theta$$

散乱前後のエネルギーの保存則より

$$h\nu_0 + m_0c^2 = h\nu_1 + mc^2$$
 \rightarrow $\frac{h}{\lambda_0} + m_0c - \frac{h}{\lambda_1} = mc$

電子の質量は相対論より
$$m = m_0 / \sqrt{1 - v^2 / c^2}$$
 \rightarrow $m^2 v^2 = m^2 c^2 - m_0^2 c^2$

以上の式より

$$\frac{2h^2}{\lambda_0\lambda_1}\cos\theta = \frac{2h^2}{\lambda_0\lambda_1} + 2m_0c\left(\frac{h}{\lambda_1} - \frac{h}{\lambda_0}\right)$$

入射光と散乱光の波長の波長差 $\Delta \lambda = \lambda_1 - \lambda_0$ として $\Delta \lambda$ について整理すると

$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$$

と求められる。 $\frac{h}{m_0c}$ = 2.426×10⁻¹²m は(電子の)コンプトン波長と呼ばれる。